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Abstract – Time-series novelty detection, or anomaly 
detection, refers to the automatic identification of novel or 
abnormal events embedded in normal time-series points. 
Although it is a challenging topic in data mining, it has been 
acquiring increasing attention due to its huge potential for 
immediate applications. In this paper, a new algorithm for time-
series novelty detection based on one-class support vector 
machines (SVMs) is proposed. The concepts of phase and 
projected phase spaces are first introduced, which allows us to 
convert a time-series into a set of vectors in the (projected) 
phase spaces. Then we interpret novel events in time-series as 
outliers of the “normal” distribution of the converted vectors in 
the (projected) phase spaces. One-class SVMs are employed as 
the outlier detectors. In order to obtain robust detection results, 
a technique to combine intermediate results at different phase 
spaces is also proposed. Experiments on both synthetic and 
measured data are presented to demonstrate the promising 
performance of the new algorithm.  
 
 

I. INTRODUCTION 
 

Novelty detection, or anomaly detection, refers to automatic 
identification of unforeseen or abnormal phenomena 
embedded in a large amount of normal data [1, 10, 11]. One 
of its most attractive application scenarios is when time series 
are targeted [10, 11, 12, 13]. For example, in a safety-critical 
environment, it will be helpful to have an automatic 
supervising system to screen the time series generated by 
monitoring sensors, and to report abnormal observations. 
Meanwhile, novelty detection is a challenging topic, mainly 
because of the insufficient knowledge and inaccurate 
representative of the so-called “novelty” for a given system 
[1].  

 
Despite its technical challenge, in the past over ten years 

novelty detection is a topic acquiring increasing attention, 
and a number of techniques have been proposed and 
investigated to address it. These techniques were 
experimentally proved to be effective in some cases, while 
they can fail in some other cases due to the assumptions 
and/or processes upon which they are based. For example, 
some were designed based on the assumption of possessing 
precise theoretical models of the underlying problem [2], or 
knowing the novelty conditions [3, 4, 5], which are 
unfortunately generally not true in real world. A wavelet-
based signal trend shift detection method is proposed in [9]. 
Nevertheless, this method cannot detect short novel patterns 
embedded in normal signals. An interesting idea for novelty 

detection, inspired by the negative-selection mechanism of 
the immune system, was proposed in [10]. However, this 
method can potentially fail because the negative set will go to 
null with the increasing diversity of the normal set. The 
method, called TARZAN, proposed in [11] is based on 
converting the time series into a symbolic string. However, 
the procedure for discretizing and symbolizing real values in 
time series can potentially lose meaningful patterns in the 
original time series. The method presented in [15] is, strictly 
speaking, not novelty detection algorithm, because it requires 
knowing what kind of novelty is expecting.  

 
In some other studies [6, 7, 8, 14], novel events were 

interpreted as outliers of the “normal” distribution function. 
The advantage of this direction is its theoretical tractability. 
Therefore, it leads to methods that can be well defined. This 
direction becomes especially appealing after an algorithm, 
called one-class SVMs, was proposed [6, 7], because the one-
class SVMs can naturally detect outliers among a set of 
vectors. Following the direction of formulating novelty 
detection as outlier detection, this paper proposes a novelty 
detection algorithm for time series using one-class SVMs. As 
with other detection algorithms, it is impossible for this new 
algorithm to succeed in all scenarios. However, this algorithm 
can at least provide an alternative and complementary 
solution to some problems in which other available 
techniques may fail.  

 
The main contributions of this paper are: 

1) Introducing the (projected) phase space to allow one-
class SVMs to be applied to time-series data; 

2) Combining the one-class SVM outputs for different 
(projected) phase spaces to produce more robust novelty 
detection results.   

 
The paper is organized as follows. Section II is devoted to a 

brief introduction to one-class SVMs. The conversion 
between a time series and a set of vectors in the (projected) 
phase space is proposed in Section III. The detection 
algorithm is presented in Section IV. Experiments on both 
synthetic and measured data are proposed in Section V to 
demonstrate the algorithmic performance.  
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II. A BRIEF INTRODUCTION TO ONE-CLASS 
SUPPORT VECTOR MACHINES 

 
We briefly introduce the basic concepts of one-class SVMs 

in this section. Its more detailed presentation can be found in 
[6] and [7]. 

 
Given a set of vectors T i , where 

, E is the dimension of I, and I is called the 

input space. A nonlinear function  maps vector x  
from input space I into a huge, or even infinite, dimensional 
feature space F. We construct a hyper-plane in feature space 
F as 
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to separate as many as possible of the mapped vectors 

from the origin in feature space F. The 
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where (0,1)ν ∈ , and it is a parameter to trade-off the 
smoothness of ( )f x  and fewer falling on the 
same side of the hyper-plane (1) as the origin in F.  

 
After introducing Lagrange multipliers  for each vector 

, the dual problem of the optimization problem of (2) can 
be obtained. Solving the dual problem leads to 
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The famous kernel trick is the procedure of using a kernel 
function in input space I to replace the inner product of two 
vectors in feature space F.  Accordingly, the hyper-plane (1) 
in feature space F becomes a nonlinear function in the input 
space I 
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where , and it is a kernel function 
in the input space I. There are many admissible choices for 
kernel function . The most widely used one in one-
class SVMs is the RBF kernel function. That is, 

( , ) ( ) ( )T
i iK = Φ Φx x x x

( , )iK x x

 
2( , ) exp{ }iK γ= − −x x x xi .                                       (4) 

 
According to (2), any vector x with  is an outlier. 

Moreover, it can be proved that a vector x  in the training set 

T is an outlier if and only if its  is 

( ) 0f <x

i

iα 1
lν

.   

 
It is proved that ν is the upper bound on the fraction of 

outliers over all training samples [6].  Therefore, the value of 
ν directly determines the sensitivity the outlier detection 
algorithm using one-class SVMs. 
 
 

III. TIME SERIES VS. (PROJECTED) PHASE SPACE 
 

According to Section II, one-class SVMs can only be 
applied to a set of vectors, and are not directly applicable to 
time-series type of data. Therefore, we have to figure out a 
method to convert the time series to a set of vectors. The 
most straightforward way is to unfold the time-series into a 
phase space using a time-delay embedding process [17].  

 
More specifically, given a time series ( )x t , , it 

can be unfolded into its phase space Q, where , and 
E is called the embedding dimension using a time-delay 
embedding process: 

1...t N=
EQ ⊆ R

 
( ) [ ( 1) ( 2) ( )]E t x t E x t E x t= − + − +x ,        (5) 

 
where . Thus, a time series t Q∈x ( )x t  can be converted to 

a set of vectors , ( )ET N
 

( ) { ( ), }E ET N t t E N= =x .                                         (6) 
 

Note that when we use the concept of phase space, we only 
use its mathematical form, and ignore its implied physical 
meaning. Also, it is obvious that vectors in T  fail to 
meet the i.i.d. condition. This fact can cause the outlier 
detection results obtained using one-class SVMs to lose some 
nice properties, such as the PAC performance bound [6]. 
However, it does not damage the validity of using one-class 
SVMs for outlier detection, because the formulation of one-

( )E N
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class SVMs were not derived based on the assumption that 
the data set follows the i.i.d. condition.  

 
In some cases, when a time series is mostly composed of 

low frequency components, in phase space Q the set of 
vectors converted from this time series distribute along the 
diagonal vector 1, where 1 . This point is 
demonstrated in Figure 1. If one-class SVMs are applied to a 
set of vectors like this, detection results will be heavily biased 
to the time-series points with either extremely large or 
extremely small values. Although novelty in many cases does 
appear in points with extreme values, this scenario potentially 
rules out the chance for detecting novel patterns formed by 
points with normal values. Therefore, the concept of 
projected phase space is introduced to cope with this bias.  

[1 1 1]T=

 
The basic idea is to project all the vectors in a phase space 

to a subspace orthogonal to the diagonal vector 1. That is, 
according to the projection theorem,  

 
' 1( ) ( ) ( )T
E t E t

E
= −x I 11 x ,                                              (7) 

 
where I is the identity matrix, and is the projected 

vector in the projected phase space, denoted by .  

' ( )E tx
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Fig. 1.  A Time Series and Its Vector Set in a Phase Space 

(E=3) 
 

Intuitively, the projection operation (7) is like applying a 
high-pass filter to the time series. The rationale of using this 
projection, instead of a high-pass filter, is that it can 
adaptively match the underlying data, and we need not 
specifically define any parameters, such as the cut-off 
frequency in high-pass filters.   

 

Meanwhile, this projection operation is not guaranteed to be 
beneficial for every real world problem [19]. It is induced to 
enlarge our choices to handle situations where the one-class 
SVMs can be severely misled. In real world applications, 
whether the time series should be unfolded to phase spaces or 
to projected phase spaces is determined by both the property 
of the time series, and the kind of novelty we wish to detect. 
As suggested by other researchers, if we consider novelty 
detection as a problem of knowledge discovery and data 
mining, it should be an “iterative activity” [11], and “the 
discovery algorithm should be run several times with 
different parameter settings” [18].   
 
 
IV. ONE-CLASS SVM-BASED NOVELTY DETECTION 

FOR TIME SERIES 
 

After converting a time-series into a set of vectors in the 
(projected) phase space, a novelty detection algorithm for 
time series becomes readily available.  

 
Given a time series ( )x t , where , and its 

corresponding vector set T N  in 

the (projected) phase space, we denote i E , where 

, and 

1...t =
) ( ),t t E=

( , t

N

N

('( ) { }E E N=x
)

1...t = { }( , t) 0∈ ,1i E , as the detection results 

when the embedding dimension is E.  suggests 
that 

( , ) 1i E t =
( )x t

( , )i E t

 is considered as a novel point in the (projected) 
phase space with an embedding dimension of E. The value of 

 is set to 1 if its corresponding time-series point ( )x t  
is the element of any outlier detected using one-class SVMs. 
For example, if is detected as an outlier, all points 

from i E  to  are set to 1.  

(') ( )E tx
1)( , t E− + ( ,i E t)

 
However, according to Section III, to unfold a time series 

into the (projected) phase space, one must first determine an 
embedding dimension E. Different embedding dimensions 
lead to different representations of the time series in phase 
spaces. Intuitively, if there is an intrinsic novel event 
happening, its novelty is supposed to manifest in its different 
representations.  

 
In order to construct a robust novelty detection algorithm 

less dependent on a particular representation, we define ( )x t  
as a novel point only when the novelty indication function 

, where ( ) 1I t = ( ) ( , )
E S

I t i E
∈

= ∏ t , and S is a set formed by 

a large range of embedding dimensions. The size of set S, 
along with the choice of its elements, plays an important role 
in trading-off between detection rate and false alarm. 
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V. EXPERIMENTS 
 

Experiments based on both synthetic and measured data are 
presented to demonstrate the performance of our novelty 
detection algorithm.  
 
A.  Experiments Based on Synthetic Data 
 

Two synthetic time series 1( )x t  and 2 ( )x t  are generated. 

1( )x t

2 ( )
is a sinusoid signal with small additive noise, while 

x t  is the same as 1( )x t  except that it has a small 
segment of large additive noise. The algorithmic parameters 
are set as follows: 
1) Embedding dimension range S,  

[3 5 7 19]S = ; 
2) One-class SVM parameter 0.02ν = ; 
3) Kernel function used by one-class SVM 

2( , ) exp{ /10}i j i iK = − −x x x x ; 
 

The original signals 1( )x t  and 2 ( )x t  are plots in Figure 2, 

along with the novelty indication function ( )I t  obtained 
when both time series are unfolded into the projected phase 
spaces.  

 

 
Fig. 2. Novelty Detection Results When Unfolded to 

Projected Phase Spaces 
 

The solid curves in Figure 2 are the synthetic time series, 
and the dash-lines are the novelty indication function. Figure 
2 shows that our detection algorithm successfully detects the 
novel points in x  without false alarms. Meanwhile, it 

also properly figures out that no part of  can be 
considered as a novel point.  

2 ( )t

1( )tx

 

Because 1( )x t  and 2 ( )x t  are time series mainly composed 
of low frequency components, we predict that results 
obtained in projected phase spaces are more reliable. For 
comparison, the detection results obtained by unfolding both 
time series into the phase spaces are shown in Fig. 3. 
Compared with the result in Fig. 2, two false alarms are 
observed in this figure, which coincides with our prediction.  

 

 
Fig. 3. Novelty Detection Results When Unfolded to Phase 

Spaces 
 
 
B.  An Experiment Based on Measured Data 
 

The experiment is to apply the detection algorithm to the 
Santa Fe Institute Competition (SFIC) data [16], which is a 
1000-point time series. The algorithmic parameters are set 
exactly the same as for the experiments in Subsection A, 
except that 0.05ν = is employed in this experiment. 
Because SFIC time series does not only have low frequent 
components, the novelty detection results obtained in phase 
spaces and project phased spaces are fairly similar. Therefore, 
we only plot out the result obtained in phase spaces in Figure 
4. This result perfectly matches the human visual detection 
result.  
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Fig. 4. Novelty Detection Results When Unfolded to Phase 

Spaces 
 

 
VI. CONCLUSIONS 

 
This paper proposes a new novelty detection algorithm for 

time series using one-class support vector machines. 
Experimental results demonstrate its promising performance. 
An interesting future direction related to this research is to 
find out the possible relationship between the value of ν and 
the confidence of the detected novelty.   
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